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With reference to spatially nonlocal nematic liquid crystals, we develop a theory of optical spatial solitons
and modulational instability in anisotropic media with arbitrarily large birefringence. Asymmetric spatial
profiles and multivalued features are predicted for self-localized light versus walk-off angle. The results hold
valid for generic self-focusing birefringent media and apply to large angle steering of individual and multiple
self-trapped optical beams.

DOI: 10.1103/PhysRevE.72.066614 PACS number�s�: 42.65.Tg, 42.65.Jx, 42.70.Df

An appealing approach towards the realization of digital
multidimensional all-optical processors and information
routers is the use of spatially self-trapped optical filaments—
or solitons—as readdressable light pencils able to guide sig-
nals in arbitrary directions. Although recent years have wit-
nessed widespread investigations of spatial solitons in
various nonlinear systems �1,2�, to date a proper description
and, hence, modeling and prediction of such functionality is
hampered by two main issues. The first is somewhat of a
technical origin: while the most studied nonlinearities for
stable two-dimensional spatial solitons rely on birefringent
materials �3�, the effects of anisotropy have been accounted
only for small walk-off or propagation along one of the prin-
cipal axes �e.g., in photorefractives or quadratic media�
�4–9�. Dealing with anisotropy in a perturbative way, current
models fail to predict the formation of self-collimated beams
readdressable over wide angles. The second issue relates to
the ubiquitous paraxial approximation, which is unable to
treat propagation at large angles with respect to the input
wave vector, i.e., to the launch direction ẑ of the beam gen-
erating the soliton.

The above considerations hold valid also for spatial
modulational instability �MI�, a process typically accompa-
nying �or precurring� solitons. MI describes unstable plane
waves which, through self-focusing, break up into trans-
versely periodic patterns eventually evolving into filaments
�10�. To date, the analysis of optical MI has been limited to
small birefringence and paraxial behavior even in crystals
with significant anisotropy.

In this paper we address nematic liquid crystals �NLC� as
a natural environment to assess the role of a strong aniso-
tropy in beam self-localization and MI. In doing so, by let-
ting the beam be paraxial not with respect to ẑ but to a
rotated reference system, we develop a model which prop-
erly accounts for arbitrarily large walk-off and birefringence.

While this allows to deal with beam steering over large
angles �11�, it also enlightens unexplored features of solitons
and MI for arbitrary crystal orientations. The beam, polarized
as an extraordinary wave, gives up radial symmetry while
acquiring an asymmetric transverse profile. The latter, de-
pending on angle of propagation, reveals a nontrivial distri-
bution of both longitudinal and transverse components.
Moreover, differing anisotropic solitons or MI patterns can
be expected for a given walk-off.

The approach we introduce hereby is general and can be
applied to any anisotropic nonlinear medium. For illustration
sake and in order to pin-point a physically relevant system,
we explicitly refer to a voltage-biased glass cell containing a
thick layer of planarly-anchored nematic liquid crystals.
Such configuration, encompassing a significant and
externally-adjustable degree of birefringence �and walk-off�,
has been previously exploited for various experiments with
spatial solitons �nematicons� and MI �10–13�. In the present
context we adopt a reference system and notation as in Fig.
1. The starting point is the vectorial wave equation: ���
�E=k0

2� ·E, with �constant� dielectric tensor �. Looking for
a plane-wave solution E=A exp�ik0nz� propagating along z,
the linear homogeneous algebraic system

L�n� · A = �n2�ẑẑ − I� + �� · A = 0, �1�

where I is the identity matrix, ẑ the unit vector in the z
direction, and ẑẑ the dyadic tensor whose elements are ẑiẑ j
with i , j= �x ,y ,z�, yields the allowed values for n, i.e., ordi-
nary and extraordinary refractive indices. Considering a light
beam propagating in the midplane of a much thicker cell, for
NLC with director n̂ �e.g., mean orientation of molecular
major axes� in the �y ,z� plane, as in Fig. 1, the relative per-
mittivity tensor is given by �ij =���ij +��ninj, and the aniso-
tropy �� constant in the illuminated region. The ordinary �o�
wave is polarized along x and no

2=��, while the extraordi-
nary �e� wave belongs to the �y ,z� plane and the resulting
index is ne��0�2=2�����+��� / �2��+��+�� cos�2�0��.
The unit-vector associated to the e wave is denoted t̂��0�, and
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its normal defines the walk-off direction ŝ��0�. ���0� is the
walk-off angle, with tan���= ��� sin��0�cos��0�� / ���

+�� cos��0�2�. We omit hereafter the dependence on �0.
The general plane-wave solution with wave vector paral-

lel to z is a combination of e and o waves. In the following,
we only consider the e wave polarized along t̂ and propagat-
ing along ŝ; the ordinary wave, being orthogonal to n̂, at the
lowest order of approximation does not affect NLC molecu-
lar reorientation through dipole-field interaction, because of
the existence of a threshold known as the optical Freeder-
icksz transition �14,15�. Hence, for o waves of intensity well
below the Freedericksz threshold, the e wave is the leading
term in the NLC reorientational nonlinear response.

The optical field perturbs the dielectric tensor as �→�
+�2��, with � a smallness parameter to be taken equal to 1
at the end of the derivation. The expansion is written as E
= �t̂Ee+�Fe+�2Ge+ ¯ �exp�ik0nez�, with Ee, Fe, and Ge de-
pending on multiple slow scales xn=�nx, tn=�nt and sn=�ns
�n=1,2 , . . . � in the reference system �x , t ,s�. At the order
O���, it is

k0
2L�ne� · Fe = ik0ne�ẑ � �1 � �Eet̂� + �1 � ẑ � �Eet̂��

= ik0net̂�− 2 cos���
�Ee

�s1
� + ik0nex̂�sin���

�Ee

�x1
�

+ ik0neŝ�sin���
�Ee

�s1
+ cos���

�Ee

�t1
� . �2�

The solvability condition implies the right-hand side �RHS�
of Eq. �2� to be orthogonal to the null space of L�ne�, given
by t̂: �Ee /�s1=0. For the first-order vectorial correction F,
writing L�ne� in the �x , t ,s� system provides: Fe

x

= �ine sin � /k0�x��Ee /�x1, Fe
t =0, Fe

s = �ine cos � /k0�s��Ee /
�t1; �x,s being the nonvanishing eigenvalues of L�ne� �see
Eqs. �5� below�. Hence, at this order of approximation, the

electric field is not linearly polarized as an extraordinary
wave, but its polarization varies across the finite transverse
profile. At the order O��2�

k0
2L�ne� · Ge = − ko

2�� · t̂Ee + �1 � �1 � �Eet̂�

�ik0ne�ẑ � �1 � Fe + �1 � ẑ � Fe�

+ ik0ne�ẑ � �2 � �Eet̂� + �2 � ẑ � �Eet̂�� .

�3�

Using the result obtained at the previous order, from the
solvability condition t̂ ·L�ne� ·Ge=0 it is found �in the origi-
nal scales, �→1�

2ik0ne cos���
�Ee

�s
+ Dt

�2Ee

�t2 + Dx
�2Ee

�x2 + k0
2�t̂ · �� · t̂�Ee = 0,

�4�

i.e., the paraxial propagation equation in the walk-off system.
The modified diffraction coefficients are

Dt =
ne

2 cos���2

�s

=
����� + ������ + 2�� + �� cos�2�0��2

���2 + 2���� + 2��
2 + ��������cos�2�0��2 ,

Dx =
ne

2 sin���2

�x

=
����� + 2�� + �� cos�2�0��

��2 + 2���� + 2��
2 + ����� + 2���cos�2�0�

. �5�

Dt�Dx involves the absence of radially symmetric spatial
solitons, with ellipticity �ratio between waists across t and x,
respectively� given by Q	�Dt /Dx�1/4 �see below�. Notewor-
thy, when the birefringence ��→0, it is Dx=Dt=1 and iso-
tropic propagation is retrieved. Figure 2 plots these quantities
versus �0 for a highly-birefringent NLC �16�. We need to
stress that paraxiality in the walk-off system does not imply
paraxiality in the original reference �x ,y ,z�, as witnessed by
the fact that, when rewriting Eq. �4� in �x ,y ,z� the second-
order derivatives with respect to z reappear. Since �4� holds
for any walk-off, this treatment can model wide angle steer-
ing of spatial solitons, as, e.g., obtainable by exploiting the
voltage dependence of � in the NLC geometry.

The molecular director n̂ lies in the �y ,z� plane and can be
expressed in terms of angle �=�0+	 �see Fig. 1�. Using a
multiple scale expansion, for the e—wave perturbation along
t̂ at the lowest order in 	 we have ��tt	 t̂ ·�� · t̂
=��T��0�	 with �see Fig. 2�

T =
2����� + ���sin�2�0�

��� + ���2 + ��
2 + ���� + ���2 − ��

2 �cos�2�0�
. �6�

The NLC orientation is described by the functional F=FK
+FRF+Fopt, with FK �Frank-term� accounting for the elastic
properties of the NLC and FRF for its director distribution
�and hence �0� due to an externally applied �electric or mag-
netic� field in the absence of light �15,17�. For a dominant e

FIG. 1. Adopted coordinate system: The gray ellipse is a sketch
of a LC molecule, n̂ is its director, s and t are the walk-off direction
and its normal, respectively. �=�0 in the absence of optical exci-
tation, ���0� is the walk-off angle. The inset illustrates a feasible
experimental arrangement, with X, Y and Z=z the axes in the labo-
ratory frame. The applied voltage determines the elevation angle 
0

of the molecules, which at zero bias lie in the Y ,Z plane with
azimuth �. The beam propagates along ŝ in the plane �n̂ , ẑ�.
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wave, the optical contribution to the energy F is Fopt

=−���
Ee
2+���n̂ · t̂�2
Ee
2� /4.
In the single-constant approximation �i.e., K=K1=K2

=K3 for molecular splay, bend and twist, respectively�, from
the Fréchet derivative of F and at the lowest-order in 	 we
get �15,17,18�

K�2	 − A��0�	 +
�0��

4
sin�2��0 − ���
Ee
2 = 0. �7�

A��0� is determined by cell geometry and bias. For the con-
figuration in Fig. 1, �0 is determined by the voltage-driven
elevation 
0 in the middle of the cell and by the azimuth �
due to NLC anchoring �at the interfaces defining the cell�
with respect to z �18�. We obtain

A��0� =
�0��RF

cos���2 �V

L
�2� sin�2�0�

2�0
− cos�2�0�� , �8�

with ��RF the low-frequency �relative� permittivity, L an ef-
fective cell thickness over which the voltage V is applied,
and cos��0�=cos���cos�
0�.

Spatial solitons. Optical spatial solitons or nematicons
�12� are solutions of Eqs. �4� and �7� in the form Ee
= �2Z0 /ne�1/2U�x , t�exp�i�s�, with U2 the intensity profile and
� the “nonlinear wave vector,” and �s	=0 �hereafter, we
will always take �s	=0 in �7�, since the optical field is
slowly varying along s; see also Ref. �18��. Self-trapped
beams travel along ŝ, while their phase profile is orthogonal
to the plane k0nez+�s= �k0ne+� cos����z−� sin���y=const,
implying that for small � �low-power solitons� the phase-
front corresponds to a plane wave propagating along z,
gradually tilted towards s as the power increases. In other
words, the nonlinearity tends to reshape the extraordinary
wave into an ordinary-like configuration, by distorting the
phase fronts towards the plane orthogonal to the Poynting
vector. The exact soliton profiles U can be obtained numeri-

cally. Nevertheless, relevant insights can be obtained in the
highly nonlocal limit �19,20�, as applicable to NLC �18�. For
NLC as in actual experiments, in fact, the perturbation 	
extends far from the excitation, so that the beam essentially
experiences an index perturbation with a parabolic-like shape
�13�. Writing 0+2�x2+ t2�, the equation for U can be
analytically solved by separation of variables, yielding a
wide class of self-trapped solutions including higher-order
and breathing ones. The simplest profile is Gaussian with
intensity profile

I =
P2

���DxDt�1/4 exp�−
P

�
� t2

�Dtt

+
x2

�Dxx
�� , �9�

where P is the soliton power, and � is the constant of the
existence curve: Pw0

2=�, with w0 the intensity �1/e� waist in
the isotropic limit �Dx=Dt=1�. It is �
=2Knec�2�DxDt /���2T sin�2�0−2��. In deriving �9�, we
used 2=−I0�� sin�2��−��� /8Knec, as found from �7� with
I0 the peak intensity when A→0 �highly nonlocal regime�.
The self-trapped beam travels at any angle ���0� with a
Gaussian profile and ellipticity Q= �Dt /Dx�1/4, as anticipated.
As in the case of MI �see below�, two solitons �with different
�� exist for the same �: their family is multivalued �one for
each �, spanned by the power P� with respect to walk-off �
�and unfolded by �0, i.e., propagating in different planes�, as
visible in Fig. 3. Noticeably, a straightforward generalization
of the theory in Ref. �21� �see also Ref. �22�� enables us to
state that such solitons �i.e., those of Eqs. �4� and �7�� are
unconditionally stable. Indeed, the Hamiltonian for the sys-
tem is written as H=�Dt
�tEe
2+Dx
�xEe
2dx dt+Hnl, where
Hnl is the nonlinear nonlocal part which is identical to the
isotropic case, and bounded from below as shown in Ref.
�21�; the remaining part is also bounded because, from Eq.
�5�, Dt and Dx are not smaller than �� / ���+��� �see, e.g.,
Fig. 2� and this implies the boundness of H, and hence the
stability.

One-dimensional modulational instability. A sufficiently-
wide elliptic beam propagating along z in the nonlinear
sample approximates well a one-dimensional plane wave.
Owing to reduced diffraction across the major axis of the
ellipse, in fact, the nonlinearity acts mainly in one dimen-
sion. As confirmed by experiments �10�, MI causes the ini-
tially uniform beam profile to breakup into a periodic pattern
and, eventually, into periodically-spaced filaments. The in-

FIG. 2. �Top� Dimensionless anisotropy coefficients vs �0; see
text. �Bottom� Walk-off angle � vs �0; the insets show the soliton
transverse intensity profiles for various �0 �labeled in degrees�. Pa-
rameters: ��= �n0�2=1.52; ��=1.75 �max�ne�=n0+0.5�.

FIG. 3. �Left� � vs � and �right� � vs ellipticity, showing the
soliton families attainable for the same walk-off. In the adopted
units � measures the power in mW needed for a 1 �m waist soliton.
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stability can be intuitively described as the �selective in
transverse spatial frequency� amplification of small ampli-
tude noise superimposed to the input beam. For simplicity,
we consider two limiting cases: an input ellipse with long
axis oriented �i� along x �l=x� or �ii� along t �l= t�. Plane-
wave noise components of wavevector kx,t will grow in am-
plitude along s with gain exp�gl�kl�s�, being l= �x , t�: hence
filaments form along the walk-off direction. A standard ap-
proach �10,23� provides:

gl =
�Dlkl

2k0ne cos���
�E0

2k0
2�0��2T sin�2��0 − ���

2A + 2Kkl
2 − Dlkl

2,

�10�

being E0 the peak amplitude of the pump �input� field. Equa-
tion �10� is the generalized expression of MI gain in the
presence of both nonlocality and anisotropy, and reduces to
the known result �10� in the isotropic regime. The MI gain is
spectrally affected by both the spatial orientation of the input
ellipse �with major axis parallel to either x or t axes in cases
�i� and �ii�, respectively� and �0. Figure 4 shows the calcu-
lated gain profile for either orientations vs �0 �i.e., by varying
the cell bias� and typical NLC parameters. Notably, the peak
gain corresponds to the maximum walk-off; when graphed vs
�, however, MI is multivalued: for the same � two distinct
wave patterns can emerge, belonging to different planes �t ,z�
and corresponding to different �0. In an advanced stage of
MI-induced filamentation, this implies the possibility of an-
gularly steering an entire array of regularly spaced �soliton�
channel waveguides by acting on �0.

In conclusion, by developing a comprehensive model for
nonlinear wave propagation in the presence of significant
walk-off, we predict the existence of �multivalue� spatial

solitons and modulational instability in highly birefringent
and nonlocal media. Self-trapped beams travel at arbitrarily
large walk-off angles, which determine their elliptic intensity
profile. The results hold valid for individual solitons and ar-
rays of filaments as generated through modulational instabil-
ity, and can be readily extended to other media. In NLC,
where walk-off can be adjusted by an external voltage, wide
angle bias-controlled steering of ultrathin anisotropic soli-
tons could be effectively implemented, leading to applica-
tions such as optical information processing in space �e.g.,
spatial demultiplexing� and optical tweezers.
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FIG. 4. �a� Maximum MI gain vs �0; �b� as in �a� vs walk-off �;
�c� maximally amplified spatial harmonic vs �0; �d� as in �c� vs �.
Thick �thin� lines refer to l=x �l= t�. Parameters: V=1 V, L
=75 �m, �=0, K=10−11 N, ��=2.25, ��=1.75, E0=5
�104 V m−1 and A is given by Eq. �8�.
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